Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 101(2): 371-383, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557372

RESUMO

Jasmonate zim-domain (JAZ) proteins comprise a family of transcriptional repressors that modulate jasmonate (JA) responses. JAZ proteins form a co-receptor complex with the F-box protein coronatine insensitive1 (COI1) that recognizes both jasmonoyl-l-isoleucine (JA-Ile) and the bacterial-produced phytotoxin coronatine (COR). Although several JAZ family members have been placed in this pathway, the role of JAZ4 in this model remains elusive. In this study, we observed that the jaz4-1 mutant of Arabidopsis is hyper-susceptible to Pseudomonas syringae pv. tomato (Pst) DC3000, while Arabidopsis lines overexpressing a JAZ4 protein lacking the Jas domain (JAZ4∆Jas) have enhanced resistance to this bacterium. Our results show that the Jas domain of JAZ4 is required for its physical interaction with COI1, MYC2 or MYC3, but not with the repressor complex adaptor protein NINJA. Furthermore, JAZ4 degradation is induced by COR in a proteasome- and Jas domain-dependent manner. Phenotypic evaluations revealed that expression of JAZ4∆Jas results in early flowering and increased length of root, hypocotyl, and petiole when compared with Col-0 and jaz4-1 plants, although JAZ4∆Jas lines remain sensitive to MeJA- and COR-induced root and hypocotyl growth inhibition. Additionally, jaz4-1 mutant plants have increased anthocyanin accumulation and late flowering compared with Col-0, while JAZ4∆Jas lines showed no alteration in anthocyanin production. These findings suggest that JAZ4 participates in the canonical JA signaling pathway leading to plant defense response in addition to COI1/MYC-independent functions in plant growth and development, supporting the notion that JAZ4-mediated signaling may have distinct branches.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Aminoácidos , Antocianinas/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Indenos , Isoleucina/análogos & derivados , Solanum lycopersicum/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas syringae , Transdução de Sinais , Transativadores/metabolismo
2.
Plant Physiol ; 172(3): 2021-2032, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702841

RESUMO

It has long been observed that environmental conditions play crucial roles in modulating immunity and disease in plants and animals. For instance, many bacterial plant disease outbreaks occur after periods of high humidity and rain. A critical step in bacterial infection is entry into the plant interior through wounds and natural openings, such as stomata, which are adjustable microscopic pores in the epidermal tissue. Several studies have shown that stomatal closure is an integral part of the plant immune response to reduce pathogen invasion. In this study, we found that high humidity can effectively compromise Pseudomonas syringae-triggered stomatal closure in both Phaseolus vulgaris and Arabidopsis (Arabidopsis thaliana), which is accompanied by early up-regulation of the jasmonic acid (JA) pathway and simultaneous down-regulation of salicylic acid (SA) pathway in guard cells. Furthermore, SA-dependent response, but not JA-dependent response, is faster in guard cells than in whole leaves, suggesting that the SA signaling in guard cells may be independent from other cell types. Thus, we conclude that high humidity, a well-known disease-promoting environmental condition, acts in part by suppressing stomatal defense and is linked to hormone signaling in guard cells.


Assuntos
Ar , Arabidopsis/fisiologia , Umidade , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Estômatos de Plantas/citologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
3.
Mob Genet Elements ; 1(1): 29-37, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-22016843

RESUMO

Restriction-like endonuclease (RLE) bearing non-LTR retrotransposons are site-specific elements that integrate into the genome through a target primed reverse transcription mechanism (TPRT). R2 elements have been used as a model system for investigating non-LTR retrotransposon integration. We previously demonstrated that R2 retrotransposons require two subunits of the element-encoded multifunctional protein to integrate-one subunit bound upstream of the insertion site and one bound downstream. R2 elements have been phylogenetically categorized into four clades: R2-A, B, C and D, that diverged from a common ancestor more than 850 million years ago. All R2 elements target the same sequence within 28S rDNA. The amino-terminal domain of R2Bm, an R2-D clade element, contains a single zinc finger and a Myb motif that are responsible for binding R2 protein downstream of the insertion site. Target site recognition is of interest as it is the first step in the integration reaction and may help elucidate evolutionary history and integration mechanism. The amino-terminal domain of R2-A clade members contains three zinc fingers and a Myb motif. We show here that R2Lp, an R2-A clade member, uses its amino-terminal DNA binding motifs to bind upstream of the insertion site. Because the R2-A and R2-D clade elements recognize 28S rDNA differently, we conclude the A- and D-clades represent independent targeting events to the 28S site. Our results also indicate a certain plasticity of insertional mechanics exists between the two clades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...